DPP - 6 (Kinematics)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

https://youtu.be/FOBVSYJhp_k

https://physicsaholics.com/note/notesDetalis/74

Q 1. On an inclined plane of inclination 30°, a ball is thrown at an angle of 60° with the horizontal from the foot of the incline with a velocity of $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, hen find the time in which ball will hit the inclined plane?
(a) 1 s
(b) 2 s
(c) 3 s
(d) 4 s

Q 2. Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is b. If a the angle of projection of the first, ratio of there times of flight is
(a) $\frac{\sin \alpha}{\cos \beta}$
(b) $\frac{\sin \alpha}{\sin \beta}$
(c) $\frac{\sin (\alpha-\beta)}{\cos \beta}$
(d) $\frac{\sin (\alpha-\beta)}{\cos \alpha}$

Q 3. A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.

(a) $\cot \theta=2 \tan \alpha$
(b) $\sin \theta=\cos \alpha$
(c) $\tan \theta=\sin \alpha$
(d) $\cot \theta=\cos \alpha$

Q 4. A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β). If the gun velocity is $\sqrt{2 \mathrm{~g} \alpha}$, it is impossible to hit the target if
(a) $\beta>3 \alpha / 4$
(b) $\beta \geq 1 \alpha / 4$
(c) $\beta \leq 3 \alpha / 4$
(d) $\beta \geq 3 \alpha / 4$

Q 5. A marble rolls down from top of a staircase with constant horizontal velocity $10 \mathrm{~m} / \mathrm{s}$. If each step is $\mathrm{y}=1$ meter high and $\mathrm{x}=1$ meter wide. To which step the marble will strike directly? $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) 21^{st}
(b) $8^{\text {th }}$
(c) $10^{\text {th }}$
(d) $18^{\text {th }}$

Q 6. A particle is projected from origin of coordinate system. A target is fixed at point (40m, $30 \mathrm{~m})$. Find the minimum velocity of projectile to hit the target? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $17 \mathrm{~m} / \mathrm{s}$
(c) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(d) $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Q 7. A particle is projected at an angle θ with an inclined plane making an angle β with the horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane ?

(a) $\frac{u}{\sqrt{2}}$
(b) $\frac{2 u}{\sqrt{3}}$
(c) $\frac{\sqrt{2} u}{3}$
(d) zero

Q 8. A ball is projected from point A with a velocity $10 \mathrm{~m} / \mathrm{s}$ perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is :

Q 9. A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v . The maximum possible range of the bullet on the inclined plane is
(a) $\frac{V^{2}}{g}$
(b) $\frac{V^{2}}{g(1+\sin \theta)}$
(c) $\frac{V^{2}}{g(1-\sin \theta)}$
(d) $\frac{V^{2}}{g(1+\cos \theta)}$

Q 10. A ball is projected horizontal with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?
(a) $\frac{V^{2}}{g}$
(b) $\sqrt{2} \frac{V^{2}}{g}$
(c) $\frac{2 V^{2}}{g}$
(d) $\sqrt{2}\left[\frac{2 V^{2}}{g}\right]$

Q 11. Two inclined planes OA and OB having inclination with horizontal 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u=10 \sqrt{3} \mathrm{~m} / \mathrm{s}$ Along a direction perpendiculan to plane OA. If the particle strikes plane OB perpendicularly at \mathbb{Q}, calculate Velocity with which particle strikes the plane $O B ?\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{3} \mathrm{~m} / \mathrm{s}$
(d) $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Q 12. A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after $\mathrm{t}=4$ second. The speed of projection of P is :-

(a) $5 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$

Q 13. A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of $8 \mathrm{~m} / \mathrm{s}$. Find it's speed after 1 sec .

(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$

Q 14. A particle is projected from a point $P(2,0,0) \mathrm{m}$ with a velocity $10 \mathrm{~m} / \mathrm{s}$ making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the li ne PQ is: - -take $\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$)
(a) $(10,6,0) \mathrm{m}$
(b) $(8,6,0) \mathrm{m}$
(c) $(10,8,0) \mathrm{m}$
(d) $(6,10,0) \mathrm{m}$

Answer Key

Q. 1	b	Q. 2	d	Q. 3	a	Q. 4	a	Q. 5	a
Q. 6	c	Q. 7	d	Q. 8	a	Q. 9	b	Q. 10	d
Q.11	a	Q.12	b	Q.13	a	Q.14 a			

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
x Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP-6 Projectile Motion on inclined plane By Physicsaholics Team
Q) On an inclined plane of inclination 30°, a ball is thrown an angle of 60° with the horizontal from the foot of the incline with a velocity of $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$. If $\mathrm{g}=10$ m / s^{2}, hen find the time in which ball will hit the inclined plane?
(a) 1 s
(b) 2 s
(c) 3 s

Ans. b

Q) Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is β. If α the angle of projection of the first, ratio of there times of flight is
(a) $\frac{\sin \alpha}{\cos \beta}$
(b) $\frac{\sin \alpha}{\sin \beta}$
(c) $\frac{\sin (\alpha-\beta)}{\cos \beta}$

Ans. d

Solution:

at angha

$$
\begin{aligned}
& T_{1}=\frac{2 u S_{1}-(\alpha \beta \beta}{g \cos \beta} T_{2}=\frac{24 \sin (\operatorname{siv} \beta)}{g \cos \beta} \\
& \frac{T_{1}}{T_{2}}=\frac{S_{1}(\alpha-\beta)}{\sin (\operatorname{tg} \theta-2-2)}-\frac{S_{1}-(\alpha-\beta)}{\cos \alpha}
\end{aligned}
$$

by symmirry

$$
\alpha-\beta=90^{\circ}-\alpha!
$$

$$
\alpha^{\prime}=90^{\circ}-(\alpha-\beta)
$$

Q) A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.
(a) $\cot \theta=2 \tan \alpha$
(b) $\sin \theta=\cos a$
(c) $\tan \theta=\sin \alpha$
(d) $\cot \theta=\cos \alpha$

Ans. a

Q) A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β). If the gun velocity is $\sqrt{2 g \alpha}$, it is impossible to hit the target if
(a) $\beta>3 \alpha / 4$
(b) $\beta \geq 1 a y 4$
(c) $\beta \leq 3 \alpha / 4$
(d) $\beta \geq 3 \alpha / 4$

Ans.

Solution:
maximum Range on inclined plan

$$
\begin{aligned}
& Q_{\text {max }}=\frac{u^{2}}{g(1+2 \pi 0} \\
& \text { It is nor rosins to hid target } \\
& \text { If } R_{\text {max }} \sqrt[\sim]{\alpha^{2}+\beta^{2}} \\
& \begin{array}{l}
\frac{\alpha \alpha}{1+B / \sqrt{\alpha^{2}+\beta^{2}}}<\sqrt{\alpha^{2}+\beta^{2}} \\
\Rightarrow 2 \alpha<\sqrt{\alpha^{2}+\beta^{2}}+\beta \\
\Rightarrow 2 \alpha-\beta<\sqrt{\alpha^{2}+\beta^{2}} \\
\Rightarrow 4 \alpha^{2}+\beta^{2}-h \alpha \beta<\alpha^{2}+\beta^{2} \\
\Rightarrow 3 \alpha^{4}<4 \alpha \beta \Rightarrow \beta>3 \alpha / 4
\end{array}
\end{aligned}
$$

Q) A marble rolls down from top of a staircase with constant horizontal velocity 10 m / s. If each step is $\mathrm{y}=1$ meter high and $\mathrm{x}=1$ meter wide. To which step the marble will strike directly? $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 21^{st}
(c) $10^{\text {th }}$
(b) $8^{\text {th }}$
(d) $18^{\text {th }}$

Ans. a

Q) A particle is projected from origin of coordinate system. A target is fixed at point $(40 \mathrm{~m}, 30 \mathrm{~m})$. Find the minimum velocity of projectile to hit the target? $(\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$)
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $17 \mathrm{~m} / \mathrm{s}$
(c) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(d) $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Ans. c

Solution:

$$
\begin{aligned}
R_{\text {max }} & =\frac{u^{2}}{g(1+\sin \alpha)} \\
\Rightarrow 50 & =\frac{u^{2}}{10(1+3 \% / 8 \alpha} \\
\Rightarrow \quad u^{2} & =800 \Rightarrow \quad u=20 \sqrt{2} \mathrm{sm} / \mathrm{scc} .
\end{aligned}
$$

* ar $4 B 20 \sqrt{2}$ max Range 1850 m . means g_{2} is just possible to thin Forget.
If $u<208 \sqrt{5}$ max Range will be less than 50 m
\& burtich will not be able to hit Jarget.
Q) A particle is projected at an angle θ with an inclined prane making an angle β with the horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane?
(a) $\frac{u}{\sqrt{2}}$
(b) $\frac{2 u}{\sqrt{3}}$
(c) $\frac{\sqrt{2} u}{3}$

Ans. d

Q) A ball is projected from point A with a velocity $10 \mathrm{~m} / \mathrm{s}$ perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is :
(a) $\frac{40}{3} \mathrm{~m}$
(c) $\frac{13}{20} \mathrm{~m}$
(b) $\frac{20}{13} \mathrm{~m}$
(d) $\frac{13}{40} \mathrm{~m}$

Ans. a
Q) A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v . The maximum possible range of the bullet on the inclined plane is
(a) $\frac{V^{2}}{g}$
(c) $\frac{V^{2}}{g(1-\sin \theta)}$
(b) $\frac{v^{2}}{g(1+\sin \theta)}$
(d) $\frac{-V^{2}}{g(1+\cos \theta)}$

Ans. b

$$
\text { Solution: } \quad \begin{aligned}
R & =\frac{2 m^{2}+\cos (\theta+\alpha) \sin \alpha}{g \cos ^{2} \theta} \\
& =\frac{y^{2}(\sin 2(2 \theta+\alpha)-\sin \theta)}{g\left(1-\sin ^{2} \theta\right)} \\
& =\frac{u^{2}(1-\sin \theta)(1+\sin \theta)}{g(1+\sin \theta)}
\end{aligned}
$$

Q) A ball is projected horizontal with a speed v from the op of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?
(a) $\frac{V^{2}}{g}$
(b) $\sqrt{2} \xrightarrow{V^{2}}$
(c) $\frac{2 V^{2}}{g}$
d) $\sqrt{2}\left[\frac{2 V^{2}}{g}\right]$

Ans. d

Q) Two inclined planes OA and OB having inclination with horizontal) 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u=10 \sqrt{3} \mathrm{~m} / \mathrm{s}$ Along a direction perpendicular to plane OA. If the particle strikes plane OB perpendicularly at Q , calculate Velocity with which particle strikes the plane $O B ?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $10 \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{3} \mathrm{~m} / \mathrm{s}$
(b) $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(d) $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Ans. a

Solution:

$\sqrt{x}=07 x$
Q) A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after $t=4$ second. The speed of projection of P is :-
(a) $5 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$

Ans. b

Solution:

for mation along x axis PR\& Qbok bave samu displogemetd, same time of motion \& samu Datceleration (gSir60)
Thefore theiv lex must be same $\Rightarrow u_{x}=0$ for P N $N=\frac{2 u_{y}}{g_{y}} \Rightarrow \frac{2 u_{y}}{g \cos 80^{\circ}}=4$

$$
U_{y}=10 \mathrm{r} / \mathrm{sec} \Rightarrow \text { inisial vilocity of } P=10 \mathrm{r} / \mathrm{sec}
$$

Q) A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of $8 \mathrm{~m} / \mathrm{s}$. Find it's speed after 1 sec .
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $12 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $20 \mathrm{~m} / \mathrm{s}$

Ans. a

$$
\begin{aligned}
& \text { Solution: } \\
& \text { motion alar } x \text { axisis uniforn }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Botion algaty axu has } \\
& \text { acceberabive } 6 \mathrm{~m} / \mathrm{sec}^{2} \text {. } \\
& F_{y} B_{y}+U_{y} t=0+6 \times 1 \\
& =6 \mathrm{r} / \mathrm{sec}^{2} \\
& \begin{array}{l}
a k t=1 \\
\vec{v}=8 \hat{\imath}+6 \hat{\jmath}
\end{array} \\
& V=10 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Q) A particle is projected from a point $\mathrm{P}(2,0,0) \mathrm{m}$ with a velocity $10 \mathrm{~m} / \mathrm{s}$ making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x -axis, xy plane is horizontal. The coordinates of the point where the particle will strike the li ne PQ is : -(take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $(10,6,0) \mathrm{m}$
(b) $(8,6,0) \mathrm{m}$
(c) $(10,8, \theta) \mathrm{m}$
(d) $(6,10,0) \mathrm{m}$

Ans. a

Solution:

C_{0}-gredictater of poret of fall $\theta(10,6,0)$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/52
https://youtu.be/FOBVSYJhp_k
https://physicsaholics.com/note/notesDetalis/74

Chalo Nikis

