

DPP - 6 (Kinematics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Video Solution on YouTube:-

https://youtu.be/F0BVSYJhp k

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/74

- Q 1. On an inclined plane of inclination 30°, a ball is thrown at an angle of 60° with the horizontal from the foot of the incline with a velocity of $10\sqrt{3}$ m/s. If g = 10 m/s², hen find the time in which ball will hit the inclined plane?
 - (a) 1 s
- (b) 2 s
- (c) 3 s
- (d) 4 s
- Q 2. Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is b. If a the angle of projection of the first, ratio of there times of flight is
 - (a) $\frac{\sin \alpha}{\cos \beta}$
- (b) $\frac{\sin \alpha}{\sin \beta}$
- $(c) \frac{\sin(\alpha \beta)}{\cos \beta}$
- (d) $\frac{\sin(\alpha-\beta)}{\cos\alpha}$
- Q 3. A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.

- (a) $\cot \theta = 2 \tan \alpha$
- (b) $\sin \theta = \cos \alpha$
- (c) $\tan \theta = \sin \alpha$
- (d) $\cot \theta = \cos \alpha$
- Q 4. A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β) . If the gun velocity is $\sqrt{2g\alpha}$, it is impossible to hit the target if
 - (a) $\beta > 3\alpha/4$
- (b) $\beta \ge 1\alpha/4$
- (c) $\beta \leq 3\alpha/4$
- (d) $\beta \ge 3\alpha/4$
- Q 5. A marble rolls down from top of a staircase with constant horizontal velocity 10 m/s. If each step is y = 1 meter high and x = 1 meter wide. To which step the marble will strike directly? ($g = 9.8 \text{ m/s}^2$)

hysicsaholics

- (a) 21^{st}
- (b) 8th
- (c) 10^{th}
- (d) 18^{th}
- Q 6. A particle is projected from origin of coordinate system. A target is fixed at point (40m, 30m). Find the minimum velocity of projectile to hit the target? $(g = 10 \text{ m/s}^2)$
 - (a) $10 \, m/s$

- (c) $20\sqrt{2} \ m/s$
- (b) $17 \ m/s$ (d) $10\sqrt{5} \ m/s$
- A particle is projected at an angle θ with an inclined plane making an angle β with the Q 7. horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane?

Q 8. A ball is projected from point A with a velocity 10 m/s perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is:

hysicsaholics

- Q 9. A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

- (b) $\frac{V^2}{g(1+\sin\theta)}$ (d) $\frac{V^2}{g(1+\cos\theta)}$

- Q 10. A ball is projected horizontal with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?
 - (a) $\frac{V^2}{a}$
- (b) $\sqrt{2} \frac{V^2}{g}$

- Q 11. Two inclined planes OA and OB having inclination with horizontal) 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u = 10\sqrt{3}$ m/s Along a direction perpendicular to plane OA. If the particle strikes plane OB perpendicularly at Q, calculate Velocity with which particle strikes the plane OB? ($g = 10 \text{ m/s}^2$)

- (d) $5\sqrt{3}$ m/s (c) $\sqrt{3}$ m
- Q 12. A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after t = 4 second. The speed of projection of P is :-

hysicsaholics

- (a) 5 m/s
- (b) 10 m/s
- (c) 15 m/s
- (d) 20 m/s
- Q 13. A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of 8m/s. Find it's speed after 1 sec.

- (a) 10 m/s
- (b) 12 m/s
- (c) 15 m/s
- (d) 20 m/s
- Q 14. A particle is projected from a point P(2,0,0)m with a velocity 10m/s making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the li ne PQ is :-(take $g = 10 \text{ m/s}^2$)
 - (a) (10,6,0)m
- (b) (8,6,0)m
- (c) (10,8,0)m
- (d) (6,10,0)m

Q.1	b	Q.2	d	Q.3	a	Q.4	a	Q.5	a
Q.6	c	Q.7	d	Q.8	a	Q.9	b	Q.10	d
Q.11	a	Q.12	b	Q.13	a	Q.14	a		

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

Written Solution

DPP-6 Projectile Motion on inclined plane By Physicsaholics Team

Q) On an inclined plane of inclination 30°, a ball is thrown at an angle of 60° with the horizontal from the foot of the incline with a velocity of $10\sqrt{3}$ m/s. If g = 10 m/s², hen find the time in which ball will hit the inclined plane?

(b) 2 s(a) 1 s

hysicsaholics

Ans. b

Q) Two bodies are projected from the same point with equal speeds in such a directions that they strike on the same point on a plane whose inclination is β . If α the angle of projection of the first, ratio of there times of flight is

(a) $\frac{\sin \alpha}{\cos \beta}$ (b) $\frac{\sin \alpha}{\sin \beta}$ (c) $\frac{\sin(\alpha - \beta)}{\cos \beta}$ (d) $\frac{\sin(\alpha - \beta)}{\cos \alpha}$

Ans. d

Q) A baseball is projected with a velocity v making an angle θ with the incline of indication α as shown in fig. Find the condition that the ball hits the incline at right angle.

(a)
$$\cot \theta = 2 \tan \alpha$$
 (b) $\sin \theta = \cos \alpha$

(c)
$$\tan \theta = \sin \alpha$$
 (d) $\cot \theta = \cos \alpha$

Ans. a

The flight
$$T = 240 gy$$
 $y \le 1.0$
 $y \ge 1.$

Q) A projectile is required to hit a target whose coordinates relative to horizontal and vertical axes through the point of projection are (α, β) . If the gun velocity is $\sqrt{2g\alpha}$, it is impossible to hit the target if

(a)
$$\beta > 3\alpha/4$$

(c)
$$\beta \leq 3\alpha/4$$

(b)
$$\beta \ge 1\alpha/4$$

(d)
$$\beta \ge 3\alpha/4$$

Ans.

maximum Range On Inclined plan

Q) A marble rolls down from top of a staircase with constant horizontal velocity 10 m/s. If each step is y = 1 meter high and x = 1 meter wide. To which step the marble will strike directly? $(g = 9.8 \text{ m/s}^2)$

Ans. a

Solution: Since 2012 CRC 21/2 Q) A particle is projected from origin of coordinate system. A target is fixed at point (40m, 30m). Find the minimum velocity of projectile to hit the target? ($g = 10 \text{ m/s}^2$)

(c) $20\sqrt{2} \ m/s$

(b) $17 \, m/s$

d) $10\sqrt{5} m/s$

Ans. c

Rmax =
$$\frac{U^2}{g(1+S_{In}A)}$$
 $\Rightarrow 50 = \frac{U^2}{10(1+3)(sp)}$
 $\Rightarrow U^2 = 300 \Rightarrow U = 2002 \text{ m/src.}$
 $\Rightarrow 40\text{ m}$
 $\Rightarrow 40\text{ m}$

Q) A particle is projected at an angle θ with an inclined plane making an angle β with the horizontal as shown in figure, speed of the particle is u, after time t find y component of velocity when particle is at maximum distance from the incline plane?

Ans. d

Q) A ball is projected from point A with a velocity 10 m/s perpendicular to the inclined plane as shown in figure. Range of the ball on the inclined plane is:

Ans. a

Q) A plane surface is inclined making an angle θ with the horizontal. From the bottom of this inclined plane, a bullet is fired with velocity v. The maximum possible range of the bullet on the inclined plane is

Ans. b

olution:

$$R = 20^{2} (08(0+d) S_{1-}q)$$
 $g(08^{2}Q)$
 $g(08^{2}Q)$
 $g(08^{2}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1-S_{1-}Q)$
 $g(1+S_{1-}Q)$

Q) A ball is projected horizontal with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection with the ball strike the plane?

(a)
$$\frac{v^2}{g}$$
 (b) $\sqrt{2}\frac{v^2}{g}$ (c) $\frac{2v^2}{g}$

Ans. d

Q) Two inclined planes OA and OB having inclination with horizontal) 30° and 60° respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u = 10\sqrt{3}$ m/s Along a direction perpendicular to plane OA. If the particle strikes plane OB perpendicularly at Q, calculate Velocity with which particle strikes the plane OB? (g = 10 m/s²)

Ans. a

Q) A particle P is projected from a point on the surface of smooth inclined plane (see figure). Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide after t = 4 second. The speed of projection of P is:-

Ans. b

Q) A ball is projected on smooth inclined plane in direction perpendicular to line of greatest slope with velocity of 8m/s. Find it's speed after 1 sec.

Ans. a

Q) A particle is projected from a point P(2,0,0)m with a velocity 10m/s making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the li ne PQ is: -(take g = 10 m/s^2)

(a) (10,6,0)m

(b) (8,6,0)m

(c) (10,8,0)m

(d) (6,10,0)m

Ans. a

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Video Solution on YouTube:-

https://youtu.be/F0BVSYJhp_k

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/74

@Physicsaholics

@Physicsaholics_prateek

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS